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SOME GENERALIZATIONS OF

KANTOROVICH INEQUALITY

C. G. Khatri C. Radhakrishna Rao
Gujarat University University of Pittsbprgh
Ahmedabad, India Pittsburgh, PA. 15260

Summary: Kantorovich gave an upper bound to

(x'Vx) (x'V-1 x) where x is an n-vector of unit length

and V is an nxn positive definite matrix. Bloomfield,

Watson and Knott found the bound to IX'VXX'V-I

and Khatri and Rao to the trace and determinant of

X' VYY'V - X where X and Y are nxk matrices such

that X'X Y'Y = I. In the present paper we establish

bounds for traces and determinants of X'VYY'V-I X and

X'BYY CX when X and Y are matrices of different orders.

A review of previous results on generalizations of Kantor-

ovich inequality and a number of new results of independent

interest arp also given.
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.1. INTRODUCTION

Let V be an nxn positive definite matrix with

ei 1en values A1 > A2  A > 0, and define

i i + An+i-) 2 /4 Xi An+i-l i = i,....ct(< n/2).

Rantorovich (1948) established the inequality

1 < (x' Vx) (x' V x)/(x' x) 2 < W (i.)

for all non-null vectors x. A natural generalization of

(1.1) is to compare the matrices A= (X'X)-IX'VX(X'X) I1

and 3 a (X'V'IX)"  when X varies over n':k matrices

of rank k. Let 01.' 0.,k be the roots of [A -OBI Of

i.e., the eigen values of A with respect to B. It is

easy to establish that 0 > ] for all i. Bloomfield

and Watson (1975) and Knott .(1975) showed that

JAB- 1 1 =e min(k,n-k)
11' O , .0.. 0 , k  -< H G (1.,2)

"- i=l 1

while Khatri and Rao (1980) established that

tr(AB- ) = 01+...+0 k <  + +) k if n>2k

< 1+ ' ' '. + 4n - k +(2k-n), if n < 2k (1.3)

where trC represents the trace of matrix C. It may be

noted that 1 0i = tr PX V P x V -  where PX is the pro-

jection operator on the column space of X. Bloomfield and

Watson (1975) gave another inequality

.
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4 k2
tr PxV(I-PX)V< - X (1.4)

when n > 2k . The inequalities (1.2) - (1.4) are useful

in comparing the efficiencies of simple least squares

estimators with the minimum variance unbiased estimators

of parameters in the Gauss-Markoff model (see Khatri and

Rao, 1980).

Khatri (1978, 1980) considered the matrix (I-BA
" )

which arises in a different context and proved the follow-

ing results. Let i m (ili2,...,in) be a permutation

of (1,2,...,n) and P denote the class of all permutations

of (1,2,...,n). Further, let

I( a) 2 ( i n )t 1( i + 2 (1.5)
n-a+l in-e+l

for am 1,2,...,k with n >2k. Then

-1 sup min(kn-k) min(k,n-k) (X- X nj+l)2

f CIO J=l ( j+X n j+l )

ctl =1 nj~i.(1.6)

k
tr (I-BA - 1 ) < > I . & if n>2k, (1.7)

- CP i()

-inf k -I if n >2k. (1.8)

Khatri (1978) further showed that if

C X'VY (Y'VY)- 1 y'V X(X'vX) -  (1.9)

2
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whre Y is an txs, (s<n-k), matrix, such that X'Y = 0,

t then

CI < IQi, trC<tr Q, and trC >trQ (1.10)

where Q , I-BA 1. Eaton (1976) established the results

(1.6) and (1.10) when k-sal.

Strang (1960) generalized the Kantorovich inequality

(1.1) in the form

r (x'A y) (y'A-ix) /(x'x) (y'y)] <'I <I I

for all non-null vectors x and y where A is an nx n

nonsingular matrix with singular values > 0

and

2
" (Ai + 6 n-+l 2 /4 6i 6 n-J+l' (1.12)

Greub and Rheinboldt (1959) proved that

(x'G 2 x) ( H 2 c) ( I +An1n ) 2

(x'GH x)2  - 1 (1.13)

for all non-null vectors x, when G and H are positive

definite commuting matri:ces with eigen valueg Xl>2.. >

and Pl...&n>O respectively. The result (1.13) can be

proved using (1.11).

A natural generalization of tjii expression in (1.11)

is of the form

3



Sg(x, Y) = x'A PYA-iX1 /I X' Xl 1 1.14)

or

f(X,Y) = tr (PxAP (1.15)

where X and Y are (nxk) and (nxs) 'matrices

of ranks k and s respectively with s > k, and A

is an n x n non-singular matrix with singular values

_ . When s=k, Khatri and Rao (1980)

established the inequalities

min(k,n-k)
g(X,Y) < 11 (1.16)

i=1

kI

f(X,Y) (A " i if n > 2k
1=1

n-k
_ + 2 k-n if n<2k (1.17)
p.1

where w are as defined in.(1.12). In the next section

we establish the bounds for (1,14) and (1.15) when s is

not necessarily equal to k.

We also consider determinants and traces of matrices

of the type

(X'G 2 Y) (Y'G ItY)-] (Y 1 2-X) (X' (1.18)

which are natural extensions of the -xpression in (1.13)

and establish bounds under very general conditions on.

X, Y, G and H.
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2. THE MAIN THEOREMS

In all the theorems stated in this section, X and

Y stand for n x k and n x s matrices of ranks k and s

respectively with s> k and P stands for the projection

operator on the column space of matrix Z.

Theorem 1. Let 61>6-62_>...>64>0 be the singular values of

an n xn nonsingular matrix A, and

i + 6n-i+l 2.
W j " ..... i ,,l ,...,m( in/2 ). (2.1)

4 6i 6n-i+l

Then

I X'APy A-x I min(k,n-s)
.T (2.2)Ix'xI -~

and

k
tr (PXApYA) if n> s+ k

rn-s
< ( 1d + (s+k-n) if n <s + k (2.3)

Note 1. If X 1 and Y are n x (n-k) and n x (n-s) matrices

which are orthogonal complements of X and Y respectively,

then (n-k) > (n-s) and

IX'A P A- 1XI IY;A1  AI (2.4)
.(2.4)

and
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tr (PxAPyA - 1 ) =(s+k-n)+tr (PY A- Px A). (2.5)
1 1

The results (2.4) and (2.5) show that we need only consider

the case s>k and n>s+k in proving Theorem 1. If

n <s+k, then n> (n-s) + (n-k) in which case we consider

the expressions on the right-hand sides of ('.4) and (2.5)

and apply the same proof.

Note 2. If A = P D6 Q is the pingular value decomposi-

tion of A, then we can write the left-hand side expressions

of (2.2) and (2.3) as

IX, Da Y.YI D I XI and tr (X, D6 YY, D 6IX) (2.6)

choosing X. = P'X(X'X) "i and Y, - Q'Y(Y'Y)-' so that

X; X* = Ik  and Y; Y. = Is  and D6  Diag(1,..6

(i.e., a diagonal matrix with a as diagonal

elements). In view of (2.6), we need only prove Theorem 1

with the restr! tions X'X = Ik , Y'Y = Is  and A is a

diagonal matrix.

Theorem 2. Let X and Y bo n x k and m x s matrices

of ranks k and s respectively with k< s, and B and C

be nxm and mxn matrices such that C ='B+ (the Moore-

Penrose inverse of B, see Rao, 1973, p. 26). Further,

let 6 1_ 62>...>6 t>0 be the nonzero singula" values of B

and t >s. Then

IX'BPyCI min(k,t-s)
H Col. (2.7)

Ix'xl -=



and

tr (PxBPyC). E. if 't>s+k
X1 -

t-s
< s+k-t+ c w. if t<s+k (2.8)

where wi = (61 + 6t i+i) 2 /46i 6t-i+l

Theorem 3. Let V and W be nx n and mx m non-negative

definite matrices, and X and V be n x k and mx s mat-

rices such that X'VX and Y'VY are positive definite.,

Further, let B and C be nxm and mx n matrices such

that

(a) t a R(B) = R(C) < s

(b) p(W) - p (B p (C:V), P(V) = p(B:V) = (C

where o(A) stands for the rank of matrix A.

(c) BW + C and CV+ B are symmetric of rank t

and BW + CV+ B = B.

If 62 > 62>... >62>0 are the nonzero eigen values of

BW+B, V+  and uj = (6i+ 6 t-i+l) 2/4 6i 6t-1+11 then

IX 'I B.)(Y -W Y) -1 Y 'IC X I min(k,t-s)
< n (2.9)

and
*1 k

tr[(XVX)x'BY(yWY)-Y'CX]1 < w' if t>s+k
j=1

t-S

< (s+k-t)+ w wil if t<s+k.i=]

(2.10)
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Theorem 4. Let S and R be nxm and mxn matrices

such that t = p(S) = (R) = p(SR) with t > s > k, and

SR and RS are symmetric, nonnegative definite and idem-

potent matrices. Further let 61> 62>''.> 6t >0 be the

2
nonzero singular values of S and w 6i +6t. ti+l) /4 6 i6t-i+l

Than

JX' SY(Y'RS Y) Y RXI min(k,t-s)< X Wi (2.11)lX'S R Xl i=l

and

tr[(X'SRX)'X SY(Y'RSY)-IY'RX1

k

(0 if t>s+ki=l1

< (s + k- t) + . if t < s + I. (2.12)

Proof. Theorem 4 follows from Theorem 3 by choosing V = SR,

W = RS, B S and C=R.

Theorem 5. Let G and 11 be symmetric and commuting

matrices such that GH is nonnegative definite and

p(G) = p(H) = p(GH) - t >s > k. Further let 61 > 62 > ...>6 t> 0

be the nonzero eigen values of H G where H is any g-

inverse of H, and w = (6 + 6 2 /46 Then
, i t-i n kit-i+V

IX'G 2 Y (Y' GHY)- y 2 X< min(k,t-s) (2.13)
x' G H X1 -=--
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and

tr[(X' G HX)-I X'G2 Y (YGI Y)Iy' H2 XI

k
< W if t>k+s

i=l

t-s

< (k+s-t)+ i if t<k+s. (2.14)
i=1I

Proof. Theorem 5 follows from Theorem 3 by choosing
O2  H2

V - W OH, B G and C- H

Theorem 6. Let V and W be positive definite, and B

and C be two matrices such that p(B) - p(C) = t(> s),

BWI C and CV'1 B are symmetric and BW -1 C V- I B - B.

Further let 6 162.._>6t > 0 be the nonzero singular

values of V 1 B(WI)-' where IV W1i and V- VV

Then the inequalities (? ").and (2.10) hold.

3. PROOFS OF MAIN THUORIMS

Proof of Theorem 1. The proof depends on a number of lemmas

which are also of independent ifl-;erpst. As observed in .jotes

1 and 2 following the statement of Thporem 1, we can take X

and Y such that X'X = Ik , Y'Y = Is , n>s+k and A as

D0 Diag(66,...,n with all 6. positive.

Lemma 1. Let V be an n.n.d. matrix or order n with non-

zero eigen values AI > A2>. > Xs > 0 and X be an n x k

matrix of rank k (<s). Then

9
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X'V X k k
sup = I i  and sup tr(PxV) X. (3.1)

x Ix'xI x i3 1

Proof. The result (3.1) is an immediate consequence of

the Poincar4 Separation Theorem (see Rao, 1979, p. 364)

which states that

P i - <  t ' i .1 . . .,k (<_s ) (3 .2 )

where pi , 1 1,2,... are the roots of the determinantal

equation

IX'Vx- V X'X I - o (3.3)

and the equality in (3.2) is attained for a suitably

chosen X.

Lemma 2. Let X and Y be n xk and n xs matrices

such that X'X - I k o = and s >k. Let be

a positive definite diagonal matrix and A >A > -. '> > 0
1 -1

be the eigen values of (Y'D Y) (Y'D- Y) . Then

k

lX'D 6YY'D 1 XI< ( IT T X X'DO XC (3.4)

and

Ds( P 1D6 < ( X )( X ) (3.5)

i-1

10



Proof of (3.4). Consider

IX'D Y Y D X1 (D X)' B (D X)I

2where D * D6 and
B*DYY'DI x D Y Y'D

which is an n.n.d. matrix of rank k. If a,...,k are

the nonzero eigen values of B, then
k

Ri ) IX'D 1Y YD X1. (3.6)

Hence using the result (3.1) of Lemma 1 with X as DX

and V as B we have

X'D Y Y D- X 2 <X'D 6X. Ix D V Y'D YY'D1 XI. (3.7)

Now,

JX'D6YY'D6 YY'D Xj. J(D-IX)' C(D'IX) (3.8)

where. C = D" YY 'D YY'D is an n.n.d. matrix of rank

a and its eigen values are XI>A2> ' s... >0 ' Then, again

applying the result (3.1) to the expression on the right

hand side of (3.8), we have from (3.7)

l2 XXDYY'D-X k

[X'D YY'D X  < I X'D6 XI I X I( n Xi)
i=l

which proves (3.4).

11
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Proof of (3.5). Consider the singular value

decompositions

D . XX'D T1 D1 T and DYY 'D- 1  T3 D2 T4

where T1, T2, T3  and T4  are orthogonal matrices and

D and D2 are diagonal matrices such that

D Diag(8 1 , ... ,
8k , 0,...) and D2 Diag(Y1, ... , ,Y, 0,.. .)

where 81>...>0 k >0 and yl_>...>Y2  0 . Then using a theorem

of von Neumann (see equation (2.11) in Rao, 1979),

tr(PX DS P Da- tr(D1 T T3 D Tj T1 ) ItrD 1 D2  (3.9)

and the equality holds iff

T2 T3 ( A and T4 T 1 A2J

where A1 and A2  are arbitrary orthogonal matrices.

Now,

i-I - =1. II

k (3.10)
x 01 - tr(P x D6 PX D-

and Ai Y2' i - 1,...,s are the nonzero eigen values

of P y D D Hence using (3.10) in (3.9) we get

12
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tr(Px D P¥ D_ ) < (tr PxD PX D_1  i

i=1

which proves (3.5). Thus Lemma 2 is established.

Lemma 3. Let X >0 be the eigen values of

Y' D YY' D1Y where Y is an nxs matrix such that

Y'Y I and diag D6 - (61,...,16n) with all 6i positive,

and w 1 (6+ an-i+l) 2/46 an-i+l for i-l,...,k(<s).

Then

k k k kH Xi < HI W and I Xi Y W i' 3.i=- i1i -

Proof. Let

II
i (B) - IB'Y' D6 Y BI /B'(Y' - DlY)- BI

T (B) - tr[B'Y' D aYB (B'(Y'D 61.YI-' B)'I]1 (3.12)

where B is an sxk matrix with P(B) - k<s. Then

applying (3.1)

k k

sup B i and sup i(B) X (3.13)B Jul B -IIi

Next we observe that

B'(Y'D_1y)-IB - BIB(B'YID-IyB)- IB (3.14)

is non-negative definite. (see example 33 on p. 77 of Rao,

1973). Then, substituting the second expression in (3.14) for

the first in (3.12), we get

13



*(B)< (YB))Y)I I(Y13)' D (YB) /(YB)'(YB)I 2

T(B) < tr((YB)'D(YB)I(YB)'Y-31I (YB)'D6 1 (YB)I (YB),(YB) I- . (3.15)

Now, writing YB = L which is of rank k and atpplying the

inequalities (1.2) and (1.3) to the right hand sides of (3.15)

we have
k k

(B) < TI (' and I'M < w
i=l ~

which in conjunction with (3.13)proves (3.11), since i

are independent of B.

Combining the results (3,4) and (3.11) we get
" k

1X'D 6 YY'D1 1l < H 10 i)4 Ih X'Daxx'DlIXlA
i=l

tr(X'D Y' x < ( O." I(trX'D XX'D-I) . 1,6

i=1

A further application of (3.2) and (1,3) to the right hand

side expressions of (3.16) proves Thoorem 1

Proof of Theorem 2. Cons der nhe I inYu iir value drcomlpo.i-
tion, B = AD where A' i = li, for i 1,2 and

D= Diag(6 1 ,...,6 t) with all 6i positive. Then

C =B + = A 2 D 1 Ai. Let X° = Ai X and Yo = A2 Y so that

X'X-X' X. and Y'Y-Y' Y are n.n.d. matrices and so also
0 00

0y-Y(')Ioan XXX

14!



Then it is easily seen that

IX'BP cx 2  IXo D6 P YO D I X 2

<; 2 X ' X ° 
2  (3.17)Ix'x2 - o 01

and

tr(PBPC) < tr(P 6 y (3.18)

0

Now using Theorem 1 on the right hand side expressions of

(3.17) and (3.18), we get the results (2.7) and (2.8) of

Theorem 2.

Proof of Theorem 3. Let V and W be of ranks n1  and

mI respectively and write V=VI V and W W1 W1-1°' where
V1  and W are n x nI and m x m. matrices of ranks n

and m1  respectively. Let

B1- (V Vl)- V{' BWl (W W1 ) - and C = (W WO- I ' 1 CV1 (V iV)- 1 .

Then, under the given conditions, it ts easy to verify that

C 1 " B and taking Xo  V; X ind Y = WY '

X'BY(Y'Wy)- Y'CX = X'B1 y ' )Yo Y ' ciX ( )o Yo o o o lo (.9

and X'VX -X' K0 . Now applying Theorem 2 to the right-o

hand side expression of (3.19), w get. the re.cmlts of

Theorem 3.

15
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